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Influence of the shape of small scatterers upon their resonance features

F. Bass and M. Fix*
Department of Physics, Microwave Remote Sensing Center, Jack and Pearl Resnick Institute of Advanced Technology,

Bar-Ilan University, 52900 Ramat Gan, Israel
~Received 3 March 1997; revised manuscript received 1 July 1997!

Scattering of waves by scatterers~inhomogeneities!, whose sizes are much smaller than the incident wave-
length in the surrounding dielectric medium, has been considered in this paper. The expressions for the
scattered field are obtained by applying the localized perturbation method. The scatterers are in an unbounded
medium or under the interface between two dielectric half-spaces. The features of resonances for arbitrary
configuration of the scatterers are studied for three-dimensional~3D!, two-dimensional, and one-dimensional
cases. The resonance frequency and the resonance linewidth have been demonstrated to be dependent on
volume characteristics of a scatterer. As a consequence, the fields scattered by inhomogeneities with different
shapes may have the same form of the resonance line. If scatterers are three-dimensional the resonance line is
sharp; for the 2D case it is noticeably wider, and in the 1D case the resonance is absent. In the 3D and 2D
cases, the resonance frequency and the width of the resonance line are oscillating functions of the distance
between the scatterer and the interface. The influence of time dispersion of the dielectric permittivity of a
scatterer upon wave scattering features is considered.@S1063-651X~97!06111-4#

PACS number~s!: 41.20.2q, 42.25.Fx
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The problem of wave scattering from an arbitrarily shap
scatterer~inhomogeneity! can be solved only approximately
The popular Born approximation is used when the scatte
field is small in comparison with the incident one. Howev
this method is not applicable when parameters of the sca
ers differ noticeably from parameters of the surrounding m
dium. If the characteristic size of the scattererL is signifi-
cantly less than wavelength| in the surrounding medium~in
all or in some directions! then the localized perturbatio
method~LPM! proposed by Lax@1# and I. Lifšic @2# can be
utilized. This method has been used, for example, for so
tion of problems of acoustic wave scattering by a defect i
crystal lattice@1–4#, of the scattering of an electron by a
impurity @5,6#, for the solution of the Helmholtz equatio
solution in investigations of resonance phenomena invest
tion ~see Ref.@7# and its references!.

The LPM can be applied for the investigation of the wa
scattering from inhomogeneities when the surrounding m
dium is also inhomogeneous. We will first consider the m
common case—an unbounded space. The basic equatio
this scattering problem is

M̂ H ]

]r
,

]

]tJ E~r ,t !1U~rn!E~r ,t !5I ~r ,t !, ~1!

whereM̂ $]/]r ,]/]t% is an arbitrary operator-function,r is a
radius vector,t is the time,E(r ,t) is the unknown field,U(r )
is the function describing the configuration of an inhomog
neity, r35r (x,y,z) for a three-dimensional~3D! inhomoge-
neity, r25r (x,y) for a two-dimensional~2D! inhomogene-
ity, andr15z for a one-dimensional~1D! inhomogeneity. In
the 3D case the inhomogeneity is at the pointr350; in the
2D case the inhomogeneity axis is the axisOX; and in the

*Author to whom correspondence should be addressed.
561063-651X/97/56~6!/7235~5!/$10.00
d

d
,
r-
-

-
a

a-

-
t
of

-

1D case the inhomogeneity lies in the planez50; I (r ,t) is a
source~current!—a known function of coordinates and time

Equation~1! can be a partial differential equation, an in
tegral equation, or a finite-difference equation, or an eq
tion of mixed type. It describes many physical phenomena
different areas of physics. All the equations are assume
be linear.

Let I (r ,t) and E(r ,t) be I (r ,t)5I v(r )e2 ivt and E(r ,t)
5Ev(r )e2 ivt, respectively. Therefore Eq.~1! can be trans-
formed into

M̂ H ]

]r
,2 ivJ Ev~r !1U~rn!Ev~r !5I v~r !. ~2!

It is impossible to solve Eq.~2! exactly, but it can be solved
approximately if the inequality|!L is used.

For the sake of definiteness let us consider the 3D c
The valueU(r ) rapidly decreases over a distanceL, and has
a sharp maximum at the pointr50. Therefore we have the
following approximate equality:

U~r !E~r !'U~r !E~0!. ~3!

To obtain this, we neglect the regionr .L, whereU(r ) is
very small.

After substitution of Eq.~3! into Eq. ~2!, we obtain the
equation

M̂ H ]

]r J E~r !1U~r !E~0!5I ~r !. ~4!

Further, we will omit for simplicity the argument2 iv and
the indexv. The solution of Eq.~4! has been found with the
help of the Fourier method. The reduction of Eq.~2! to Eq.
~4! is the essence of the localized perturbation meth
~LPM!.
7235 © 1997 The American Physical Society
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Let us determine the inverse Fourier transform in the f
lowing form

f q5
1

~2p!3 E f ~r !e2 iq•rdr . ~5!

The equation forEq is derived from Eq.~4!:

M $ iq%Eq1E~0!Uq5I q , ~6!

from which we findEq andE(r ),

E~r !5E I q

M $ iq%
eiq•rdq2E~0!E Uq

M $ iq%
eiq•rdq. ~7!

Assumingr50 in Eq.~7!, we obtainE(0); after substituting
E(0) into Eq.~7!, we findE(r ).

The first term in Eq.~7! determines the field in a homo
geneous space; the second term describes the scattered
which is of principal interest. We will further consider th
scattered fieldE(r ) only. The calculations for the 2D and 1D
cases are identical to those for the 3D case.

In all instances the scattered field has the following for

En~r !52E Uqn

Dq
n8

E0~qn8!

M $ iq%
eiq•rdq, ~8!

where

qn85q2qn , E0~qn8!5E I q

M $ iq%
dqn ,

D~qn8!511E Uqn

M $ iq%
dqn . ~9!

Expression~8! is a generalization of the result due to Lifsˇic
@2#.

Let the equation

Dn~v,qn8!50 ~10!

have a real solution. This means that there is a resona
frequency in the 3D case, and eigenwaves in the 2D and
cases. In the Born approximation,Dn51, and thus the reso
nance frequency and the eigenproper waves cannot be
tained. The field determined by Eq.~8! has been calculate
in the far zone with the help of the residue theorem and
stationary phase method.

Let us consider the equation

M̂ ~ iq!50, ~11!

where the unknown value isqz . This equation is assumed t
have a real positive solution. The vectorq' has components
qx andqy . q'9 is the solution of the equation,

]qz~q'9 !

]q'9
52

r'

z
, ~12!

where the vectorr' has onlyx andy components.
The scattered field can be determined by the express
-

eld,

:

ce
D

b-

e

n

En52
4p2E0~q'9 !Uq

'9

I 92Mqz
~q'9 !D~q'9 !cosu

exp$ i @qz~q'9 !z1q'9 r'#%

r
,

~13!

where

I 95
]2qz~q'9 !

]qx9
2

]2qz~q'9 !

]qy9
2 2S ]2qz~q'9 !

]qx9]qy9
D 2

,

Mqz
~q'9 !5

]Mqz
@qz~q'9 !q'9 #

dqz
, cosu5

z

r
.

We apply the generalized theory to the field, described
the wave equation

M̂ H ]

]r J 5D1
v2

c2 «, U3~r !5
v2

c2 «8 f 3~r !. ~14!

D is the Laplace operator,c is the light velocity in vacuum,
« is the dielectric permittivity of the space outside the inh
mogeneity,«8 ~we assume that«8@«! is the dielectric per-
mittivity of the inhomogeneity, andf 3(r ) is a dimensionless
function, describing the shape of the inhomogeneity.

Let a plane electromagnetic waveE0eikr be incident upon
inhomogeneity.

In the 3D case, for the scattered fieldE, we have

En52
4pA2v2L3«8A«

c2

E0

12
v2L2«8

c2 FA11
iA2vLA«

c G
3

expS i
v

c
A«r D

r
, ~15!

where

A15E
0

`

v f̄ ~v !dv, A25 1
4 E

0

`

v2 f̄ ~v !dv,

f̄ S r

L D5
1

4p E
V

f ~r !dV.

L in this case is the effective size of the inhomogeneity;V is
the solid angle. A formula of type~15! is presented in@6,7#
for scatterers of a special shape. The resonance takes
when«8.0.

The scattered fieldEn has a resonance structure with th
following resonance frequencyv r and a relative width of the
resonanceg :

v r5
c

AA1LA«8
, g5

p

2

A2

A1

vA«L

c
;S «

«8D
1/2

!1. ~16!

One can see thatg;L/|«!1 ~where |«5c/vA«!, and
therefore the resonance line is narrow. The resonance co
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56 7237INFLUENCE OF THE SHAPE OF SMALL SCATTERERS . . .
tion corresponds qualitatively to the relationL;|«8 , and is
satisfied when the size of the inhomogeneity is compara
with the wavelength inside the inhomogeneity. This is t
well-known electromagnetic spatial resonance@8#. The
imaginary part of the denominator describes the energy
going from the inhomogeneity into the surrounding spa
This energy is transformed into the energy of eigenpro
waves in the surrounding space. It must be noted that the
of the energy being transformed is small when the dielec
permittivity of the inhomogeneity«8 and of the surrounding
space« differ significantly, and also if the area of the surfa
of the inhomogeneity is small. It must also be taken in
account that the resonance frequencyv r is defined by«8
only while the width of the resonanceg is defined by both«8
and«. This follows from the physical sense of the resonan
phenomenon.

The resonance frequency and the width of the resona
depend only on the integralsA1 andA2 , i.e., depend weakly
on the shape of the inhomogeneity. The adaptability con
tions of the LPM enable only the main resonance to be
termined. This means that scatterers with different sha
may have identical resonance lines. The 3D inhomogene
scatter isotropically; the 2D and 1D inhomogeneities sca
anisotropically.

In the 2D case we obtain

En5

A2p3E0A«8L2
v2

c2

12
A«8L2v2

c2 F ln
c

A«Lv sinu
1 i

p

2 G
3

exp@ i ~qxr 81 ikxx!#

Aqxr 8
,

sinu5
r'

r
, A5E v f̄ ~v !dv,

f̄ S r'

L D5
1

2p E
0

2p

f ~r'!df. ~17!
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The resonance curve in the 2D case is wider than in
3D case, because the surface area of an inhomogeneity
nite in one dimension, and therefore the energy transfe
also larger.

In the 1D case the scattered field is

En5
ipAv«8LE0exp@ i ~qz1k'•r'!#

cA« cosuF12
ipAvL«8

cA« cosu
G , ~18!

where

q5
v

c
A« cosu.

One can see from Eq.~18! that there is no resonance becau
the energy transfer from the inhomogeneity is very large

The problem of wave scattering from an inhomogene
under an interface between two dielectric media is of sign
cant interest. Let us consider such a problem.

Let a plane electromagnetic waveE0eik•r be incident
upon a flat interfacez50 from the half-spacez.0 with a
dielectric permittivity«1 to the half-spacez,0 with dielec-
tric permittivity «2 . The inhomogeneity is at the poin
r1(z,0). The basic system and boundary conditions are

DE1~r !1
v2

C2 «1E1~r !50 if z.0,

DE2~r !1
v2

C2 «2E2~r !1U~rn2r ln!E2~r !50 if z.0,

~19!

E1~z50!5E2~z50!,
]E1~z50!

]z
5

]E2~z50!

]z
.

~20!

The calculation of the scattered field is analogous to the
culations considered above, so we present the final res
only.
3D case

En52
4pA2v2L3«8A«1cosfQ~u!P~f!

c2

E03

12
v2L2«8

c2 FA11 iA2

vLA«2

c
2

p2A2R~0!L

2z1
expS 2

2ivA«2z1

c D G

3

expS i
v

c
@A«1ur2r1u1S3# D

ur2r1u
, ~21!
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whereu is the angle of incidence,Q(u) is the transmission
coefficient in the situation when the wave is incident upo
flat interface from the half-spacez.0, andP(f) is the same
when the wave is incident from the half-spacez,0,

Q~u!5
2A«1cosu

A«1cosu1A«22«1sin2u
,

P~f!5
2A«22«1sin2f

«1cosf1A«22«1sin2f
,

cosf5
z2z1

A~r'2r1'!21~z2z1!2
,

S35
v

c
@~A«22«1sin2f2A«1cosf2«1cosu!z12k'r'#,

wherek' is is the wave vector, lying in the plane parallel
the planeXOY.
a R~u!5
A«1cosu2A«22«1sin2u

A«1cosu1A«22«1sin2u
,

R~0!5
A«12A«2

A«11A«2

,

whereR(u) is the reflection coefficient for the wave incide
from the half-spacez.0.

The first and second terms of the denominator in squ
brackets of Eq.~21! are the same as in the case of a unifo
medium. The third term represents an interference of wa
reflected from the interface and from the inhomogeneity. I
an oscillating function of z1 with period p/q2 @q6

5(v/c)A«6#, and it decreases proportionally toz1
21. We

assume that the inequalitiesL!|«!z1 are satisfied. The
above-mentioned third term is very small in comparison
the first and second terms; the ratios of the third term to
first and second terms are of orderL/z1 and L/|« , respec-
tively.
tor of Eq.
r of
by the
2D case

En5

&Ap3E0A«8L2
v2

c2 Q~u!P~f!

12
A«8L2v2

c2
F ln

c

A«2Lvsinu
1 i

p

2
1

expS i
p

4 DAp3R~qx!exp~22iqxz1!

Aqxz1

G
exp@ i ~qxr 81 ikxx1S2!#

Aqxr 8
, ~22!

where

P~f!5
2nxcosf

A«12«22nx
2cos2 f1nxcosf

, nx5
c

v
qx , qx5Aq2

2 2kx
2,

R~qx!5
cosfAq1

2 2qx
22Aq2

2 2qx
22~q1

2 2qx
2!2sin2f

cosfAq1
2 2qx

21Aq2
2 2qx

22~q1
2 2qx

2!2sin2f
,

r 85A~y2y1!21~z2z1!2,

S25@qx~z1cosf1y1sinf!1z1Aqx
22ky

21kyy1#.

The structure of the scattered field in the 2D case is the same as in the 3D case, but the third term in the denomina
~22! is significantly larger than in Eq.~21!. The ratios of the third to the first and second terms are of the orde
@1/ln(|« /L)#AL/|« andAL/|«, respectively. This is caused by an inhomogeneity infinite in one direction, and therefore
increased interference.

1D case

En5
ipAv«8LE0P~u!Q~u!exp@ i ~q1z1k'r'2q2z1!#

cA«22«1sin2uH 12

ipAvL«8F12R~u!expS 22ivA«2z1

c D G
cA«22«1sin2u

J ,

~23!

A5E f ~v !dv.
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There is no resonance in this case. The results presente
be generalized to more complex equations, for example,

]2E

]z2 1Q̂H ]

]r'
J E1U~r !E~r !50, ~24!

whereQ̂ is an arbitrary function of]/]r' . The solution can
be obtained as described above.

The LPM can be utilized for the investigation of wav
scattering by inhomogeneities when the surrounding med
is also inhomogeneous. Let us consider the equation

M̂ H r ,
]

]r J E~r !1U~r !E~r !5I ~r !, ~25!

and let us suppose that the distancel over which
M̂ $r ,(]/]r )% varies is much more largely than the distan
L. We will also consider that the Green’s functiong(r ,r 8)
for Eq. ~26! is known:

M̂ H r ,
]

]r J g~r ,r 8!5d~r2r 8!. ~26!

By utilizing the relationU(r )E(r )'U(r )E(0), we obtain
the equation

M̂ H r ,
]

]r J E~r !1U~r !E~0!5I ~r !. ~27!

The solution of this equation is

E~r !5E g~r ,r 8!I ~r 8!dr 82E~0!E g~r ,r 8!U~r 8!dr .

~28!

Assumingr50 in Eq. ~28!, we can findE(0); after substi-
tuting E(0) into Eq.~28!, we obtain

E~r !5

E g~0,r 8!I ~r 8!dr 8*U~r 8!dr 8

11*g~0,r 8!U~r 8!dr 8
g~r ,0!. ~29!

Relation ~29! is a generalization of formula~8!. If M̂
5D1k2« and U(r )5«8 f (r ) ~see above!, the denominator
he
o

can

m

of Eq. ~29! has a form identical to that of Eq.~15! with the
resonance linewidth dependent on«~0!, i.e., on the position
of the inhomogeneity. The resonance frequency does not
pend on«~0!.

We have not considered the time dispersion of«8 ~the
dependence onv!. However, this dependence could be s
nificant. Let«8 be given by the expression that is valid whe
the scatterer is composed from linear oscillators:

«85«0S 11
V2

v0
22v2D , ~30!

wherev0 is the fundamental frequency of the oscillator, a
V is the Langmuir frequency of the gas of oscillators. W
consider the 3D case.

We have two resonance frequencies determined by
formula

v r
25

v0
21v0r

2

2
6F ~v0

22v0r
2 !2

4
2v0r

2 V2G1/2

, ~31!

wherev r0
2 5(c2/A1L2e0) is the square of the resonance fr

quency, when the time dispersion is absent. We see tha
resonance frequency depends on the scatterer’s characte
size, on the oscillator’s fundamental frequency, and on
Langmuir frequency. The resonance takes place ifv r

2 is posi-
tive and real, i.e., ifuv0

22v r0
2 u.2V2v r0

2 .
In conclusion, the scattered field possesses the follow

important features: If the surrounding medium is infinite, t
scattered field in the 3D and 2D cases has some resona
The resonance line for a 3D inhomogeneity is wide. T
resonance frequency is of orderv r;c/LA«8, and the rela-
tive width g;A«/«8!1. The resonance frequency depen
on «8, and the resonance width depends on«8 and «. The
scattered field is isotropic.

In the 2D case the resonance frequency is of the sa
order as in the 3D case, but the resonance line is wide an
of order@1/ln(|« /L)#. The scattered field is anisotropic. In th
1D case the resonance is absent.

If the surrounding medium contains two half-spaces,
resonance frequency in the 3D and 2D cases is an oscilla
function of z1 with the spatial period|«/2. These results are
valid for an arbitrary shape of a scatterer~inhomogeneity!.
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