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Influence of the shape of small scatterers upon their resonance features
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Scattering of waves by scatteréishomogeneities whose sizes are much smaller than the incident wave-
length in the surrounding dielectric medium, has been considered in this paper. The expressions for the
scattered field are obtained by applying the localized perturbation method. The scatterers are in an unbounded
medium or under the interface between two dielectric half-spaces. The features of resonances for arbitrary
configuration of the scatterers are studied for three-dimensi@@g| two-dimensional, and one-dimensional
cases. The resonance frequency and the resonance linewidth have been demonstrated to be dependent on
volume characteristics of a scatterer. As a consequence, the fields scattered by inhomogeneities with different
shapes may have the same form of the resonance line. If scatterers are three-dimensional the resonance line is
sharp; for the 2D case it is noticeably wider, and in the 1D case the resonance is absent. In the 3D and 2D
cases, the resonance frequency and the width of the resonance line are oscillating functions of the distance
between the scatterer and the interface. The influence of time dispersion of the dielectric permittivity of a
scatterer upon wave scattering features is considg¢gdd63-651X97)06111-4

PACS numbdis): 41.20—q, 42.25.Fx

The problem of wave scattering from an arbitrarily shapediD case the inhomogeneity lies in the plare0; I (r,t) is a
scattere(inhomogeneity can be solved only approximately. source(currenj—a known function of coordinates and time.
The popular Born approximation is used when the scattered Equation(1) can be a partial differential equation, an in-
field is small in comparison with the incident one. However,tegral equation, or a finite-difference equation, or an equa-
this method is not applicable when parameters of the scattefigpy of mixed type. It describes many physical phenomena in

ers differ noticeably from parameters of the surrounding meyitferent areas of physics. All the equations are assumed to
dium. If the characteristic size of the scatteteis signifi-  pe Jinear.

cantly less than wavelengthin the surrounding mediurtin Let I(r,t) and E(r,t) be I(r,t)=1,(r)e "' and E(r,t)

all or in some directionsthen the localized perturbation =E (r)e"'“!, respectively. Therefore Eql) can be trans-

method(LPM) proposed by Lax1] and I. Lifsic [2] can be  formed into

utilized. This method has been used, for example, for solu-

tion of problems of acoustic wave scattering by a defect in a (9

crystal lattice[1-4], of the scattering of an electron by an M[—,—iw] E,(N+Ur)E,(r)=1,(r). (2

impurity [5,6], for the solution of the Helmholtz equation o

zglr:n(l;)gelr;zlgly[eéitgri;u(i)tgsrg;‘erreesn%r;ince phenomena mvestlgah is impossible_ to so!ve Ec(2_) exact_ly, but it can be solved
The LPM can be applied for the investigation of the wave2PProximately if the inequalitg <L is used.

scattering from inhomogeneities when the surrounding me- For the sake of. definiteness let us con5|der the 3D case.

dium is also inhomogeneous. We will first consider the most! "€ valueU(r) rapidly decreases over a distariceand has

common case—an unbounded space. The basic equation »SNa/P maximum at the point=0. Therefore we have the
this scattering problem is following approximate equality:

; U(r)E(r)~U(r)E(0). &)
—, 1 E(r,t) +U(r ) E(r,t)=I1(r,1), 1
[&r &t] (r)+Ur)ErH =10 @ To obtain this, we neglect the region>L, whereU(r) is
very small.
whereM{a/r,a/at} is an arbitrary operator-functiom,is a After substitution of Eq/(3) into Eq. (2), we obtain the

radius vectort is the time E(r,t) is the unknown fieldy(r) ~ equation

is the function describing the configuration of an inhomoge- 5

neity, rs=r(x,y,z) for a three-dimensiongBD) inhomoge- Y1a _

neity, ro=r(x,y) for a two-dimensional2D) inhomogene- Mlﬁr] E(n+UNEO)=I(r). @

ity, andr, =z for a one-dimensiondflLD) inhomogeneity. In

the 3D case the inhomogeneity is at the pag0; in the  Further, we will omit for simplicity the argument i and

2D case the inhomogeneity axis is the a®¥X; and in the the indexw. The solution of Eq(4) has been found with the
help of the Fourier method. The reduction of E8) to Eq.
(4) is the essence of the localized perturbation method

* Author to whom correspondence should be addressed. (LPM).
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Let us determine the inverse Fourier transform in the fol- 4°Eq(q))U g . " "
lowing form = — "’J L ”‘h exp{l[qz(qL)Z—’—quL]},
1" qu(qL)D(qL)Coag r
1 . (13)
— —ig-r
fq Wff(r)e dr. (5)
where

The equation foiE, is derived from Eq(4):

_ o PaAq]) Pad)) ([ aLq])\?

M{ig}Eq+E(0)Uq=1g, (6) 9.2 &qu aooq) |
from which we findE, andE(r), v

. IMglaza1)q;] z
E(r)=f I—qeiq"dq—E(O)j A eidq. (7) qu(qL)z—qu , COS9=F.
M{iq} M{iq} '

We apply the generalized theory to the field, described by
Assumingr=0 in Eqg.(7), we obtainE(0); after substituting  the wave equation
E(0) into Eq.(7), we find E(r).

The first term in Eq(7) determines the field in a homo- ~[9
geneous space; the second term describes the scattered field, M[é_r
which is of principal interest. We will further consider the
scattered fieldE(r) only. The calculations for the 2D and 1D A
cases are identical to those for the 3D case.

In all instances the scattered field has the following form:

w? w? ,
=A+078, U3(r):EZ8 fa(r). (19

is the Laplace operatog, is the light velocity in vacuum,
¢ is the dielectric permittivity of the space outside the inho-
mogeneity,e’ (we assume that'>¢) is the dielectric per-
mittivity of the inhomogeneity, andi;(r) is a dimensionless

e (1o —j Uq, Eo(gn) aiarg (8  function, describing the shape of the inhomogeneity.
n qu’1 M{iq} ’ Let a plane electromagnetic waizge'*" be incident upon
inhomogeneity.
where In the 3D case, for the scattered fidkg we have
' AmA,0?L 3" e E
[ , E /) _ f q d ’ __ 2 0
qn q Qn O(Qn M{Iq} qn En C2 w2L2£, |A2wL\/§
1- 2 1T
U c c
' " 9
D(qn): 1+ 771 ddn -
M{ia} ex;{i%\/gr)
Expression(8) is a generalization of the result due to Tliéfs X—, (15

[2]. '

Let the equation where

Dp(w@,q)=0 (10 Y Y
A1=f vf(v)do, A2=%fo v?f(v)do,

have a real solution. This means that there is a resonance 0
frequency in the 3D case, and eigenwaves in the 2D and 1D

cases. In the Born approximatioR,,= 1, and thus the reso- r
nance frequency and the eigenproper waves cannot be ob- ?(E)
tained. The field determined by E(B) has been calculated

in the far zone with the help of the residue theorem and the

1
=2 fo(r)dQ.

stationary phase method. L in this case is the effective size of the inhomogenéitys
Let us consider the equation the solid angle. A formula of typél5) is presented if6,7]
for scatterers of a special shape. The resonance takes place
M(iq)=0, (11  Whene'>0.

The scattered fiel&E, has a resonance structure with the
where the unknown value &,. This equation is assumed to following resonance frequeney, and a relative width of the
have a real positive solution. The vectpr has components resonancey:

dx andgy. g is the solution of the equation,

" c m A, w\el (8)1/2
39,(d7) r =, =-——|—| <1.(16
q; w__ (12) O AL T 2A, ¢ & (16
q. z
where the vector, has onlyx andy components. One can see thay~L/X,<1 (where X,=c/we), and

The scattered field can be determined by the expressiontherefore the resonance line is narrow. The resonance condi-
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tion corresponds qualitatively to the relatibn-x,,, and is
satisfied when the size of the inhomogeneity is comparablg
with the wavelength |n5|de_ the mhomogenelty. This is thenite in one dimension, and therefore the energy transfer is
well-known electromagnetic spatial resonanf@]. The also larger

imaginary part of the denominator describes the energy out- In the 1|'3 case the scattered field is

going from the inhomogeneity into the surrounding space.

This energy is transformed into the energy of eigenproper

waves in the surrounding space. It must be noted that the part imAwe’ LEgexdi(qz+k, -1,)]

of the energy being transformed is small when the dielectric E,= - , (18
iTAwLe’

The resonance curve in the 2D case is wider than in the
D case, because the surface area of an inhomogeneity infi-

permittivity of the inhomogeneitg’ and of the surrounding

spacee differ significantly, and also if the area of the surface

of the inhomogeneity is small. It must also be taken into
account that the resonance frequengy is defined bys’ where
only while the width of the resonanceis defined by bottz’ ®

ande. This follows from the physical sense of the resonance q= < Ve cosp.

phenomenon.

The resonance frequency and the width of the resonanaene can see from E@18) that there is no resonance because
depend only on the integrafs; andA,, i.e., depend weakly the energy transfer from the inhomogeneity is very large.
on the shape of the inhomogeneity. The adaptability condi- The problem of wave scattering from an inhomogeneity
tions of the LPM enable only the main resonance to be deunder an interface between two dielectric media is of signifi-
termined. This means that scatterers with different shapesant interest. Let us consider such a problem.
may have identical resonance lines. The 3D inhomogeneities Let a plane electromagnetic wavg,e'*" be incident
scatter isotropically; the 2D and 1D inhomogeneities scattegipon a flat interface=0 from the half-space>0 with a

Ccye co¥d| 1—

Cc\e cosd

anisotropically. _ dielectric permittivitye | to the half-space<0 with dielec-
In the 2D case we obtain tric permittivity e_. The inhomogeneity is at the point
r1(z<0). The basic system and boundary conditions are
2
w
V2T EAe’' L2 — w2
E.— ¢ AE(N+ 52 8+E+(N=0 if 2>0,
Ae'L%w? | c i T
n i =
c? JeLw sing 2 w? _
AE_(r)+62 e E_(r)+U(r,—r)E_(r)=0 if z>0,
><eX|iii(0|xr’+ikxx)] (19
Var’
E (7 0)=E (20 JE,(z=0) JE_(z=0)
o _ H(2=0)=E_(2=0), ————=——.
sm&zT, A= | vf(v)do, (20)
1 (2 The calculation of the scattered field is analogous to the cal-
f S ’Tf d 1 culations considered above, so we present the final results
(rp)dé. 17
L 27 Jo only.
3D case
£ __ AmAwLle e cospQ(O)P($) Eos
i c? w?L%’ . wL\/s_, m?A,R(0)L 2iw\/s_,zl
1_ 2 A1+|A2 - ex -
C (o 2z, o

exp(i S [Velr—ril+Sy]

X
Ir—r4

: (21)
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where @ is the angle of incidence&Q(0) is the transmission \/Zcosﬂ— m
coefficient in the situation when the wave is incident upon a R(8)= —,
flat interface from the half-spaae>0, andP(¢) is the same e co+ e —e ,sinfo
when the wave is incident from the half-space0,
Ve, —e
2/e . cosd R(0)= ———,
Q)= —, Vot e
Je  co+Je_—e.Siro
whereR(0) is the reflection coefficient for the wave incident
2\e_—e,sifep from the half-space>0.
P(¢)= : ) The first and second terms of the denominator in square
2.,.COSp+ o e, SiM e brackets of Eq(21) are the same as in the case of a uniform
medium. The third term represents an interference of waves
cos = 4 reflected from the interface and from the inhomogeneity. It is

V(r —ri)%+(z—z2p)% an oscillating function ofz; with period #w/q_ [Q-
=(w/c)e+], and it decreases proportionally m*. We
1) . assume that the inequalitids<X, <z, are satisfied. The
Ss=1 [ Ve_—e,siPd—1s,cosp—e.cos0)zs—Ki T ], apove-mentioned third term is very small in comparison to
the first and second terms; the ratios of the third term to the
wherek is is the wave vector, lying in the plane parallel to first and second terms are of ordetz; andL/X,, respec-
the planexXOY. tively.

2D case

2
w
V273 EoAe LZEEQ(H)P(@ expi(gyr’ +ik,X+S))]

En= @2
LT . / r/
As'L2w? | c . GX4I Z) \/?R(CIX)EXFX_Zquzl) A
c? \/s_,stinﬁ 2 V0dxZ1
where
2v,C05p c
P = , = — , = 27 — kz,
() Ve, —&_—v2co ¢+ v,cosp P e BENTET
cosp\0; —a;— Vg% —az— (93 —ap)*sirte
R(Qx):

cosp\a% — s+ Vg% — ;- (o — g))%sirPe
r'=\(y—y)?+(z—z)%

S,=[ax(z1C08p+Y1Sing) +21\aZ — K+ kyy1].

The structure of the scattered field in the 2D case is the same as in the 3D case, but the third term in the denominator of Eq.
(22) is significantly larger than in Eq(21). The ratios of the third to the first and second terms are of the order of
[/In(x,/L)]VL/ X, andJL/X,, respectively. This is caused by an inhomogeneity infinite in one direction, and therefore by the
increased interference.

1D case

iTAwe LEQP(0)Q(0)exdi(q z+k, r, —q_z;)]

E,=

—2iwe_z '
imAwLe’| 1—R( a)exp( fl)
cVe_—e sirfd| 1— .
c\/s,—s+5|ﬁzt9

(23
A=j f(v)dv.
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There is no resonance in this case. The results presented cahEq. (29) has a form identical to that of E415) with the
be generalized to more complex equations, for example, resonance linewidth dependent ef®), i.e., on the position
of the inhomogeneity. The resonance frequency does not de-
pend one(0).

We have not considered the time dispersions6f(the
- dependence ow). However, this dependence could be sig-
whereQ is an arbitrary function of/Jr, . The solution can nificant. Lete’ be given by the expression that is valid when
be obtained as described above. the scatterer is composed from linear oscillators:

The LPM can be utilized for the investigation of wave

fE+A
972 Q

%}Eﬂ—U(r)E(r):O, (24

scattering by inhomogeneities when the surrounding medium mo |14 Q02 (30
is also inhomogeneous. Let us consider the equation & =% w2~ w?)’

wherewy is the fundamental frequency of the oscillator, and
Q is the Langmuir frequency of the gas of oscillators. We
consider the 3D case.

and let us suppose that the distante over which We have two resonance frequencies determined by the
M{r,(a/dr)} varies is much more largely than the distanceformula
L. We will also consider that the Green’s functigir,r’)

I\A/Ikr, %] E(r)+U(NEr)=I(r), (25)

. 2 2 2 252 1/2
. Wyt (wg— wg,)
for Eq. (26) is known: 2= 0 . or, |1% 4 or Wl :2} @3
M[r, ar] g(r,r’)=a(r=r"). (26) Wherewfo:(czlAleeo) is the square of the resonance fre-

o _ _ quency, when the time dispersion is absent. We see that the
By utilizing the relationU(r)E(r)~U(r)E(0), we obtain  resonance frequency depends on the scatterer’s characteristic

the equation size, on the oscillator's fundamental frequency, and on the
p Langmuir frequency. The resonance takes plamf ifs posi-
M[r, _) E(r)+U(r)E(0)=I(r). (27) tive andreal i.e., ifwi— w?|>20%0,.
ar In conclusion, the scattered field possesses the following

important features: If the surrounding medium is infinite, the
scattered field in the 3D and 2D cases has some resonance.
The resonance line for a 3D inhomogeneity is wide. The
E(f)ZJ g(r,r’)l(r’)dr’—E(O)f g(r,r")U(r")dr. resonance frequency is of ordef~c/L+\/s’, and the rela-
(28) tive width y~/e/e’<1. The resonance frequency depends
on &', and the resonance width dependsednandes. The
Assumingr=0 in Eq.(28), we can findE(0); after substi- scattered field is isotropic.

The solution of this equation is

tuting E(0) into Eq.(28), we obtain In the 2D case the resonance frequency is of the same
order as in the 3D case, but the resonance line is wide and is
j g(0r)I(r")dr’ fU(r')dr’ of order[ 1/In(x./L)]. The scattered field is anisotropic. In the
1D case the resonance is absent.

E(r)= 9(r,0. (29

1+ fg(0r")U(r")dr’ If the surrounding medium contains two half-spaces, the
. resonance frequency in the 3D and 2D cases is an oscillating
Relation (29) is a generalization of formul#8). If M function of z; with the spatial periodt,/2. These results are

=A+k% andU(r)=¢'f(r) (see abovg the denominator valid for an arbitrary shape of a scattefathomogeneity.
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